Inf2B Learning Summary and Equations

Version 1.0
May 2018

Ben Southall

1 Notation

Generally I have followed the notation used in the slides and the lecture notes.
However I have made a few small deviations when I personally have found
the lecture notes to cause confusion. In all cases, I follow the convention that
when iterating or summing over dimensions, an upper-case letter represents the
highest index or a set, and the corresponding lower-case letter represents an
index. For example,

D

Z() ford e D

d

Generally, I use the following conventions for letters used as indices/sizes
and sets:

d, D - dimensions of vector-space, normally the dimensions or individual
components of a feature vector. When using a matrix, d corresponds to an
element representing the dth dimension of a feature-vector, but this could be in
either direction of the matrix itself. For document classification, however, these
letters represent documents.

n, N - a number of a set, generally the training samples or test samples.

k, K - the classes in classification problems.

i,j - these are used in the notes but I prefer not to use i and j for general
indices as I find it is quick to forget exactly what they are indexing. Therefore
I will only use i and j when it is obvious that we are indexing over something
for which there is no other clear choice of letter to use.

Typically in a summation or product the indices start at 1 and go to the
number at the top. If there is any divergence from this it will be noted explicitly.
For example, the following are all equivalent:

N N
)= =Y
n n=1 neN

This last one demonstrates my informal use of th capital letter as if it were
a set, this does not mean N is itself a set but rather ne/N is a shorthand for
ne{l..N}

The notes often use an alternative letter when we are considering alternative
cases of the same type of thing, for wantt of better phrasing. For example, when
considering a class k, the notes use the letter 1 to sum over all the other classes
in K. In this case, I prefer to use k’ to refer to a class that is not class k, so that
I can remember what we’re talking about. For example,

KP(X|Ck)P(Ck)
;p(xww)])(ck')

Here, as we’re summing over all classes K but we’re considering a class k in
the numerator, so we use k’ to index the other classes in the denominator.

Vectors will appear in bold face and in an exam I would underline them.
Matrices in the notes appear in bold face, I will diverge from the notes’ notation
at times by using a capital bold letter in these notes for clarity.

I am using this notation because on a personal level I sometimes find I get
confused in the lecture notes and have adopted my own personal style that is
only slightly different but will help me remember what I am doing more clearly.
I hope it makes sense to you too. My strategy in the exam will be to be explicit
about what notation I am using and if you did choose to follow my notation
that would be a good idea, however if in doubt I can only recommend following
the notation used in lectures verbatim. I have not *yet* asked Hiroshi about
how strict the notation will be marked.

2 Distance and Similarity Measures

2.1 Distance Measures

There are various ways of measuring how far two items are in D-dimensional
vector-space. The Manhattan or City-block distance measures how far two items
are from each other as if walking along a series of square blocks, as the streets
are arranged in a modern city. It is called the [.; norm and is calculated thus:

D
r1(a,b) = |aq — b4
d

The Euclidean distance is the 'normal’ distance measure for basic geometry
that we are used to using,

D

r2(a,b) =la —b] = Zd:(ad — bg)? = \/(a-b) - (a-b)

This measures the distance between two points, but is highly dependent on
the units in question. We can normalise this to a similarity measure between 0
and 1 that is therefore independent of the scale of the numbers involved. For
this, we use

sim(a,b) = m
Thinking about how this works, when x and y are the same point, the Euclidean
distance is 0 and the value is 1. When they are infinitely far away, the similarity
is 0.

The Hamming distance between two items is simply the number of items
thsat differ. The binary strings ”01101001” and ”10101010” have a Hamming
distance of 4.

2.2 Correlation

Correlation is different from distance. Distance measures whether different
points are close to each other, whereas correlation measures if they follow a
general trend - if when x is large, y is too, and when x is small, y is too.

The Pearson Correlation Co-efficient is defined as

N
pla,b) = iy 3 Leazited (2

n
where [t is the mean and o is the variance. Dissecting this, (an — /la) is the
straight-line distance from a to the mean value of a, and this is normalised by
the variance of a. Therefore we have a relative measure of the deviation of a
point from the mean. Because we take the product of the left- and right-hand
sides, if a is greater than its mean when b is greater than its mean, the result
is positive and we have a positive correlation. Conversely, if a is greater than
its mean when b is less than its mean, the correlation is negative. This is a
bit like how we take the covariance, except the covariance is a measure of how
spread-out the data values are, and the correlation is a measure of whether the
values follow a similar trend.

When we are using vectors, we can represent this in the following way:
(x—%)-(y-5)
lz—Z]y—yl

which is the same as the cosine of the angle between £ — Z and y — . This is
one if they are both in the same direction (positive correlation), -1 if they are
opposite (negative correlation) and 0 or very small if they are perpendicular (no

correlation)
We can also express the correlation succintly as
__ COV(a,b)
p(a7 b) - T.0p

2.3 Recommender Systems

For recommender systems, we have a set of known relations between two vari-
ables, let’s assume this is a matrix M of ¢ against f, using the film example, ¢
is a critic and f is a film, amd Mc,f is the rating given by a critic to a film. We
want to find a film that a user u will like. The most basic theory is to graph
in multiple dimensions. Each critic ¢; is a point in F dimensions, the value for
each dimension being the value that the particular critic gave to that film. For
example, if we have three critics, ¢, c2, 3 and ¢4 and three films, f1, fo, and
f3, then let’s say

4
if ,61:[5 4 2]
2

— = O

5 2
1

M=y 1 4 =h=
1)

To recap, in this case, we want to consider our users as the points, and the
items that are being reviewed as the dimensions in this vector space. This is
because we want to compare the location of a new user to that of the existing
users, and use this to estimate what to recommend. We are recommending
films to users, not users to films, so the film scores are the dimensions, and the
users/critics are the points.

We use the Euclidean distance to work out how far existing critics’ ratings
are from the user’s ratings, for those films the user has reviewed. We then
normalise these using the similarity measure:

1
1+ > (M ;—M,;)?

feFyNF;

sim(cy, c;) =

where feF,,, NF; expresses that we want the Euclidean distance between critic
i and the new user, for all those films that both have rated already. We can’t
have the Euclidean distance in dimensions representing a film that either one
or both hasn’t rated yet.

We could then recommend to the user the film that the closest critic most
highly rated. Or we could use an average to smooth this out a bit and consider
all critics. For a film f that the user has not yet rated, we can complete the gaps
in the user’s critic vector ¢, to make a complete, estimated critic vector €,:

C
uf = & > Me

We average over all the critics their entry in the ratings matrix for that film,
and assign this value to the gap in the user’s entry. These two options aren’t
a very sophisticated system - using the closest critic’s favourite film, if a critic
gave a very bizarre rating for one film, this will enter into our system. And by
averaging, we smooth it out but lose our sense of picking a close critic. So we
combine these two into a method where we average, but weight our average by
similarity:

C
éuf = ———— > (sim(M,, M) M)
> sim(M.,M,) c

Or, using vector notation,

C
Bup = > (sim(@e, Tu)Ter)

S sim(x.,x,) ¢
By using correlation, instead of looking for the distance between film ratings,
we look for how well film ratings occur in a pattern. For example, the vectors
[1 2 3} and [61 62 63} have a large Euclidian distance measure but
their values in each dimension are similar. If a critic ranks all films consistently
lower than others, then a way to normalise the score is to take a measure from

the mean of that critic’s scores.

= 1
.Tc — F .’ch

<M=

F
Se = ﬁ ;(J}cm — i'c)z

If we then define the score for a critic ¢ and a film f as 2. ¢, then this score
has a mean of 0 and a (sample) standard deviation of 1:

_ Tey—Te
ZCf - Se

We can also use the Pearson Correlation Co-efficient.

F F _ _
J— 1 _ 1 LTeyf—Te Leogf—Te
Tcieo = T Zf:(zclf)('z@f) = 71 Z(1301 3)(2562 2)
!
This has the advantage that —1 < r¢ ., < 1 and so 1 can be added to give
a similarity measure.

3 K-Means Clustering

Cluster analysis is different from classification. In classification, there is some
inherent difference between members of different classes, and the learning is a
supervised process. With clustering we are simply trying to group points to
reduce the amount of data we have to handle. Hierarchical clustering uses a
tree-like structure and can be top-down or bottom-up. Partitional clustering
divides the input space into non-overlapping clusters. K-means clustering is an
example of this.
K-means clustering to group D-dimensional vectors into K clusters:

Pick K random points to serve as cluster centres.

Assign each point to the nearest cluster.

Make each cluster centre the mean of its assigned vectors.

If the cluster centre has moved, repeat from the assignment stage.

We use the mean-squared error function to find the distances of points &,
from the cluster centre Mmyy:

KN 2 1 if n belongs to class k

B =]L\fzk:%:zndwn_mk‘ Fnk = {0 otherwise

The mean-square error function measures how far points are from their clus-
ter means, but not how far clusters are from each other. K-means clustering
is guaranteed to converge on a local minimum of the error function, but not
encessarily the global minimum error. Where data are split far away and the
cluster centre is in the middle, we may end up with one very large cluster rather
than two smaller ones. Also, a large cloud of data can gradually pull a small
cluster’s cluster centre away from a good location for it

L EXN)
min 5 > > Zkn|Tn — My
Zkn kL n

4 Dimensionality Reduction

For dimensionality reduction, we want to take D-dimensional data and reduce
it to a (e.g.) 2-dimensional plane that facilitates visualisation of the data. For
this, we take the dot product with (two) unit vectors, here called @ and ¥.
For optimum viewing, we want the variance along these dimensions to be at
maxima. Therefore the aim is the following maximisation problem:

max Var(u) + Var(v), subject to L9

0,0
where Uy, = U « Ty, Uy = DV « Ty,

U and O are the two eigenvectors with the largest eigenvalues of the covari-
ance matrix, S':

1 N
=) Tn
n
Apparently calculating eigenvectors is beyond the scope of the course.

5 K-Nearest-Neighbour Classification

In K-NN Classification, we have a set of N classified examples, X, and a set Z
of observed vectors to be classified.
for zeZ
for xeX
calculate distance (2, &) between z and @
let Up(2) be a subset of X that contains the k nearest samples to 2

let the class of z, c(z) = argmax Z 56,6(1/)
ceC z/elUy(2)

1 ifa=0b

0 otherwise

where 5, = {

Le. for each test point, for all the training data, we find the k closest points
and pick the mode of the classes for these k nearest points.

6 Naive Bayes

Bayes’ theorem is a basic observation that we can calculate the probability
that we observe a given that b is ’true’ from the probability that we observe
b given that a is true’, and the probability of observing a in the first place.
For classification, we express the probability that an observed feature vector @
belongs to a class ('}, from the probability that within class C, we can find a
feature vector ® and the probsability that in any class we can find a feature
vector &.

P(Cklx) = p(ng&])’(@) _ _p(xIC)P(C)
;p(X\CkI)P(Ck/)

Here, P(Ck |w) is the posterior probability, the probability that when we see
x, it belongs to class C. We normally assign & to the class with the highest
posterior probability. p(:L‘|Ck) is the likelihood that within class k we would
find a feature vector x, and P (C k) is the prior probability, the probability that

class k appears - this takes into account that some classes are more prevalent
than others. If we give a photograph of a fruit to our model that has a height-
to-width ratio equally matching the known ratios for a lemon and a dragonfruit,
but we’re in Scotmid, then it’s most likely a lemon. Or, failing that, a bottle of
Buckfast.

When we are faced with a classification problem, p(a:) can usually be omit-
ted. This is because we have already observed x, now we need to decide on the
most likely class for x. p(ac) makes no difference to the calculation of to which
class we should assign . However in this case, we need to remember then that
if we do omit this, the result is no longer a true probability. The results for all
classes won’t sum to unity.

For D dimensions, with Naive Bayes, we assume that each dimension is
independent of each other. Therefore,

P(:c|C’k) = P(:L‘l,xz, ...,:L‘D|Ck)
= P(xz1|xz, ..., xp, Ck) P(22|x3, ..., D, C)...P(xp|Cy)
~ P($1|Ck)P($2|Ck)...P(1'D|Ck)

7 Document Classification

For document classification, we have two document models - the Bernoulli Model
and the Multinomial Model. They are based on two mathematical distributions
of the same names.

7.1 The Bernoulli, Binomial, and Multinomial Distribu-
tions

When we are simulating a boolean process, such as tossing a coin, we have two
outcomes. If we represent one outcome as being true, then k& = 0 when the
outcome is false and £ = 1 when the outcome is true; k represents the number
of times the outcome is ’true’. When the probability that & = 1 is p, then if
we have a random variable X, we can model X by the Bernoulli distribution:

P(X=0)=p,P(X=1)=(1-p)
therefore

P(X=k)=kp+(1—k)(1—p)=pF@1—p)'F

We can then simulate the outcomes for a value of k£ (0 or 1).
When we repeat this process multiple times, we get the binomial distribution:

P(X =k)=(})p*(1—p)F

Here, we drop the restricion that ke {0, 1}, rather k£ < m represents the number

of times that the outcome is true’ and pk represents the chance of picking this
outcome k times. The binomial co-efficient takes account of the fact that the
order in which we pick the outcomes doesn’t matter, as long as there are k of
them. So we have repetitions.

(%) =

n! represents the number of ways of picking n items when the order of them
matters, and we divide by 7! because we don’t care about the order of the ’true’
outcomes, and by (n — 7“)! because we don’t care about the order of the ’false’
outcomes.

When we have more than two outcomes, let us have n items which can belong
to one of D classes. I.e. the binomial model represents the special case where
D=2, and the Bernoulli distribution represents the special case where D=2 and
n=1. For a particular class d, let 14 represent the number of items of class d.
We take these as repeats, i.e. the items of class d are indistinguishable from
each other. Using the string "hello” as an example, n = 5, D = 4, and the 1 is
repeated so 1 is 2. If we imagine selecting colourful stickers from a bag to spell
out the word hello, it doesn’t matter in which order we pick the 'I’s.

Therefore, again, we have n! permutations, but for each d, we have ng
permutations that are equivalent. The multinomial co-efficient is therefore:

To model a probabilistic distribution then, let pg represent the probability
of drawing an item of type d. If n items are drawn at random from a large set,
then let & model the distribution with x4 representing the number of times an
item of type d is drawn. Therefore,

D
P(@) = 2 [
Hnd! d

d

Here, pgd representd the probability of drawing an item of type d, the num-
ber of times in 4 we want to model. So the left-hand side, the multinomial
co-efficient represents the number of equivalent permutations, and the right-
hand side represents the probability of one permutation.

7.2 The Multinomial Document Model

For each model we have a vocabulary w consisting of V words or word stems
that are of interest to us in classifying documents into different categories. For
a document d in a test sample of D documents, using Naive Bayes,

P(Cyld) oc P(d|Cy)P(Ck)
We estimate the probabilities of individual words:

® _ Number of documents in class k where w, is observed
P(w” ’Ck) - number of documents in class k

Class C} has Ny, documents in it, and document Dg is document d, be-
longing to class C},.
In the Bernoulli model, document D§ is a feature vector in V' dimensions,

with each element, st representing the number of ocurrences in the document

of word v. ng (wv) represents the number of ocurrences of word v in documents
observed in class k during training.

We find the probability that a word v occurs in a document of class k using
the estimates from the training feature vectors. The the posterior probability
that document d belongs to class k is estimated using Naive Bayes, using a
multinomial distribution on the probability of the individual words in the doc-
ument. The multinomial model uses the probabilities of drawing each word
found in the document from the vocabulary, using the calculated probabilities
that these words would occur in class k documents. The number of draws is
thus the length of the document.

N
5 > Dy,
P(w,|Cy) = 57—
23D

Here we are summing over all the documents of class k {1 .N, k} and counting
the ocurrences of word v, and dividing it by the ocurrences of all words in

documents of class k. Here, we use DZ to represent the set of documents of
class k, however the lecture notes use the notation

N
. > TitZik
P(wi|Cy) = 57—

oD TitZik
s

where &y, is a document that may or may not be in class k, and so 2z is 1
when document &, is in class k and 0 otherwise. In either case, they are both
equivalent and equivalent to

ny(wy)
Vv

Z/: nk(wv/)

For our multinomial model then, let & represent the feature vector for doc-
ument d in class k, Ds. Recall that

v
[1 P(wy|Cy)™
v
gives the probability of drawing a single, unique string of words from the
vocabulary that matches the document we see, and

n!

\%4
[Tz.!

normalises this to take into account that firstly, we’re not interested in the
order the words come in, and secondly, when we have repeated words, there are
several orders of drawing them all of which have the same result. Therefore,

v
P(z|Cr) = v [P(w,|Cr)™
[[z,! v

Again, as this is a classification problem, the multinomial co-efficient doesn’t
depend on the class and so can be omitted. So,

P(Cile) o PlalC)P(Ci) o (T Planl G P(CY)

If we need the actual probability, then whilst the above expression is pro-
portional to the probability but not equal to it,

P($|Ck> — KP(wICk)P(Ck)
%)P(wlck/)P(Ck/)

7.3 The Bernoulli Document Model

In the Bernoulli model, the feature vector & = Ds represents whether or not
each word is present in the document, and not the frequency of ocurrences. We
use the Bernoulli distribution to model the chance of picking out the feature
vector representing the document and then use Naive Bayes as before.

P(z|Cy) =]‘_/[(20 P(wy|Ck) + (1 — 2)(1 — P(wy|Cy))]

v

As the model only takes into account presence or absence of a word, the esti-
mated likelihood of the word is easier to calculate:

Pluwy|Cy) = "5

That’s simply the number of documents in which word v ocurrs over the total

number of documents, all within class k. So for the Bernoulli model, P (wy | C k)
represents the proportion of documents, whereas in the multinomial model, it
represents the frequency of the word itself.

For both models, P(Ck) is the number of documents of class k over the

number of documents, % A difference between the two models is that in the

Bernoulli model, if a word does not occur in class k, that effects the probability
of drawing document d, whilst in the multinomial model, only the presence of
words in the vocabulary effects the probabilities.

10

8 Gaussian Classifiers

We use Gaussians because they fit a lot of data. When we observe data in many
scenarios, they fit a 'bell curve’ and this can be modelled by a Gaussian. So
when we don’t have enough samples to calculate a specific model for the data,
we can assume that it fits a Gaussian distribution and this normally gives a
satisfactory result. In one dimension, the Gaussian function is as such:

1 _emw?

p(z|p,0?) = N(z|p,0?) = et

For multiple dimensions, the formula induces last night’s dinner. Let’s see
it in action:

plalp, %) = —p—rebe S
2

a b -1 __ 1 d —b o 1 d —b
A{c d1:>‘4 X{—c a]ad—bC[—c a}

Using the covariance matrix, we can get the correlation co-efficient:

055

p(xi, ;) = Neoe
Using a Gaussian to perform a basic classification,
. 2
P(Cklz) o< P(z|Cy)P(Cy) = N(x; 1, 07)
Taking the natural logarithm of this gives the log likelihood,

(z—p)?

2
O}

LL(zljup,02) = n plel, 02) = S(—tn(2r) — In(o?) —
The log posterior probability is therefore
LL(z|Cy) +In P(Cg) + K

where K is some constant

For two-class problems, we can take the ratio of these and base our decision
on whether the result is greater than 1 or not, or for multiple classes, we can
take the largest value and assign the feature vector to that class.

11

9 Discriminant Functions

The aim of a discriminant function is to define the boundary between regions
associated with different classes. When deciding on a suitable discriminant
function, we are trying to minimise the error rate, that is, the rate of misclas-
sification.

P(Error) = f: f: P(xeRy |k # k', 2eCy) P(C)
k

k/

We sum the probability that @ is misclassified into any region Ry that is
not the correct region, Rj. For continuous probabilities, we would integrate
over the region instead. Let’s not.

For a discriminant function 9/, we assign & to class C}, if

yp(x) > yp(x) VKK, kK #£k

Using the log posterior probability as a discriminant function,

yrp(x) = In P(Cklz) = In p(x|Cy) + In P(Ck) + &
1

1
= _5(53 — ,J,)TEEl(a: —) — §lnl2k\ +1InP(Cy) + K

If the dimensions of our feature vectors are independent from each other,
and the covariance is class-independent, then this reduces to a linear function:

_ 1 _
(@) = pi S e — §Hfzklﬂk + In P(Cy)

We can summarise this as follows:

1
Let ’w]j; = /nglgl and Wy = —§wkTu,k + In P(Cy)

then T
yip(x) = wi x + wyo

wg is known as the weight vector, and wgq as the bias for the class.
For a spherical Gaussian,

1
1
SO
|z — Mk:|2
Yp(x) = 5z InP(Cy)
1
= T‘Q[("B — p)’ (z —)] + InP(Cy)

When expanded, as T is class-independent,
1 2
ye(@) = 55 lml” — (mkx — 2" i) + InP(Cy)

12

10 Neural Networks

Right, get ready for this, kids.

A neural network can be used to estimate the weights for a discriminant
function without needing to have an underlying mathematical model, such as the
Gaussian distribution. Single-layer networks can only output linear discriminant
functions, that is, hyperplanes through the D-dimensional vector space. But
multi-layer networks can be non-linear and so can produce arbitrarily complex
decision boundaries.

A neural network node can produce exactly one decision boundary, that is, it
can only separate two things. It takes a feature vector & as input, multiplies it
against a weight matrix and produces a scalar output, Y. The lecture notes use
a matrix for this and make it more complicated, this matrix simply represents
multiple discriminant functions for multiple classes. We will just consider the
single-class function. Using the discriminant functions from before,

T
Yk = Wko + W T
We modify wyg to add wg, and modify & to add 1 do the above reduces to

Yk = w%w

There are different types of neural networks. For linear networks with the
step activation function, Yk is 0 or 1, depending on which of the two classes the
node assigns @ to. In this case, we train the network with a series of training
vectors (probably as a matrix), and a vector £ where 5, is 0 if 9, should be 0 or
1 if yp, should be 1. Our aim is to choose the weights in Wj, so as to minimise
the number of misclasifications. For N samples in the training set, we use the
sum-of-squares error function,

1 N
Blw) = 13—t
n

2

1 N
=3 Z‘wgmn —tn
n

Because the output of the nodes is binary, we can’t train the network based
on this output, however we can train it using the error function as this is a
smooth, continuous function. We want to find the gradient of the function,

oE oF)

Owyy Owy,
The gradient is a vector in D dimensions representing the direction in which the
error function increases most rapidly. Therefore, subtracting a small amount of
this from the weights updates them to
For an iteration 7,

VwE(wy) = (

wT+1 g wT. —_ ’r]a—E
ki ki 8“%‘

13

For a single node,

L ND
522 WidTnd — tn)

n d

Z Z Wi Tnd: — tn)Tnd
8wk d

n

- Z mnd

= Z xnd where 0, = Y, — t,

Thus if the output from the node matches the expected output for that
sample, the value is 0 and the weight is not adjusted.

The following algorithm summarises this (sorry about the abhorrent spac-
ing):

while not converged
Awkd =0VEk > d
for ne N
for ke K
D

Ynk = Y WkdTnd
d

5nk7 = Unk — tn
for deD
Awyg = Awgg + OpkTng
for ke K
Wk = W — NWg

We can also estimate wq from the input data:

14

This is the difference between the mean number of samples has class k and
the network outputs of class k, over all the training samples.

Perceptrons are linear neural networks that produce a binary output. After
applying the weights to the input, the summation phase, the output is passed
into a function that returns 1 if the output is over a critical value or 0 if it is
below that value. With the step function, no number of layers of the network
can make any decision boundary that is not linear, but if we use a different
function after the summation phase, we can make non-linear decisions and so
can make arbitrarily complex decision boundaries.

What happens if we would like a neural network whose output estimates the
posterior probability of the class? Then we would like an activation function
that looks like the probability distribution for a two-class Gaussian. It turns
out that the logistic sigmoid looks roughly like this, and also is differentiable
over all input values, so it can be used in gradient descent training.

Let a be the activation value, then a = wTw then
o o 1

Note thet here, we are using Wy, to be the vector 1nclud1ng the bias wg, and
x to have the additional one prepended for this. For two classes, if

wla — in L (®ICk) (PC)
: P(x|Cp)(PCY)

then

P(Chlz) = yla) = o(a) = 1

This means for two-class problems, when using the logistic sigmoid, if the
weights produced a log probability ratio, the output would actually be a poste-
rior probability. It tuns out if we train our network well, using the sigmoid, the
output of the neural network looks enough like a probability that we can use it
as such.

We can train the network using gradient descent too, however the error
function is different, so the derivative will be too.

Z Z 'wk; mn tnk)2

aE1n . aEn aynk aank
oW, N 9y, Oank Ow,,

= 5nk: g/(ank) Tnd

awkd Zg ank)(1 = g(ank)) onk Tna

= Wia = Wkd — N[9(ank)(1 = g9(ank)) (Ynk — tnk) nd]
For multiple classes, we use the Softmax activation function instead.

15

o o o e(ak‘) o e('wl{m)
P(Ckle) = yp(x) = g(ar) = E) F i)

For both of these, the output addds to 1 and each output is the posterior
probability of class k.
For Softmax,

ust %
oFr
= Onkr Yir Ik — Yk Yk

where I, = 1 iff @ = b and 0 otherwise.

11 Appendix: JSome of the Lyrics to Cry for
You by September

I never had to say goodbye
You must have known I wouldn’t stay
While you were talking about our life
You killed the beauty of today
Forever and ever
Life is now or never
Forever never comes around
People love and let go
Forever and ever
Life is now or never
Forever’s gonna slow you down
You'll never see me again
So now who’s gonna cry for you
You'll never see me again
No matter what you do

16

