Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Bayes' Theorem:

Let A, B be events with $P(B) \neq 0$. Then:

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)} \\
\text { Or the extended alternative: } \\
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B \mid A) * P(A)+P(B \mid \bar{A}) * P(\bar{A})} \\
\text { Where } \bar{A} \text { must be understand as not-A }
\end{gathered}
$$

Conditioning a random variable:

$$
P(X=k \mid B)=\frac{P(X=k \cap B)}{P(B)}
$$

Conditioning expectation:

$$
E(X \mid B)=\sum_{k} k \cdot P(X=k \mid B)
$$

Law of total probability:

If B1, B2, B3... is a partition of the sample space S , then for any event A we have:

$$
P(A)=\sum_{i} P\left(A \cap B_{i}\right)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Law of total probability for expectations:
$E(X)=E\left(X \mid A_{1}\right) P\left(A_{1}\right)+\ldots+E\left(X \mid A_{n}\right) P\left(A_{n}\right)$

Normal distribution:

- Standard:

$$
\begin{aligned}
& f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& f_{a X+b}(x)=\frac{1}{a} f_{X}\left(\frac{1}{a}(x-b)\right)
\end{aligned}
$$

- General:

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Standard deviation:

$$
\sigma=\sqrt{\operatorname{Var}(X)}=\sqrt{\sigma^{2}}
$$

- Z value:

$$
\begin{aligned}
& Z=\frac{1}{\sigma}(X-\mu) \\
& E(X)=\mu \\
& \operatorname{Var}(X)=\sigma^{2}
\end{aligned}
$$

Several random variables:

- The joint probability mass function of X,Y:

$$
\begin{gathered}
p_{X, Y}(x, y)=P(X=x \cap Y=y) \\
0 \leq p_{X, Y}(x, y) \leq 1 \\
\sum_{x} \sum_{y} p_{X, Y}(x, y)=1
\end{gathered}
$$

- Marginal mass functions:

$$
\begin{aligned}
& p_{X}(x)=\sum_{y} p_{X, Y}(x, y) \\
& p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
\end{aligned}
$$

Given by rows and columns:

$$
\begin{aligned}
& P(X=x \mid Y=y) \\
& P(Y=y \mid X=x)
\end{aligned}
$$

Continuous case - joint density function:

For all (x,y):

$$
\begin{aligned}
& 0 \leq f_{X, Y}(x, y) \\
& \iint_{S} f_{X, Y}(x, y) d x d y=1
\end{aligned}
$$

- Marginal densities:

$$
\begin{aligned}
f_{X}(x) & =\int f_{X, Y}(x, y) d y \\
f_{Y}(y) & =\int f_{X, Y}(x, y) d x
\end{aligned}
$$

- Independence:

If X, Y are independent:

$$
\begin{aligned}
& P(X \in[r, s] \cap Y \in[u, v])=P(X \in[r, s]) P(Y \in[u, v]) \\
& f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
\end{aligned}
$$

Other "independences":

$$
\begin{aligned}
& P(X=k \cap Y=l)=P(X=k) P(Y=l) \\
& E(X Y)=E(X) E(Y) \\
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \\
& G_{X+Y}(s)=G_{X}(s) G_{Y}(s) \\
& \operatorname{Cov}(X, Y)=0
\end{aligned}
$$

Covariance:

$\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)$
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$

Properties:

$\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
$\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
$\operatorname{Cov}(a X+b Y, Z)=a \operatorname{Cov}(X, Z)+b \operatorname{Cov}(Y, Z)$

Variance and covariance:

$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$

Correlation:

$(\operatorname{Cov}(X, Y))^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)$
$\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$
$-1 \leq \operatorname{Cor}(X, Y) \leq 1$

Properties:

$\operatorname{Cov}(a X+b, c X+d)=a c \operatorname{Var}(X)$
$\operatorname{Cor}(a X+b, c X+d)=\frac{a c}{|a c|}= \pm 1$

Distributions - overview:

- Bernoulli (Yes/No questions)

If a coin is tossed once, what is the probability that it comes up heads?

- Binomial

- The number of trials is fixed.
- The number of successes is a random variable.

If a coin is tossed 20 times, what is the probability heads come up exactly 14 times?

What is the probability of getting more than half the answers right in a test of 10 questions if for each question independently I am 60% likely to answer it correctly.

- Geometric

If a coin is repeatedly tossed, what is the probability the *first* time heads appears occurs on the 8 th toss?

Roll two D6 repeatedly. How likely is it that I first have a roll where the product of the 2 numbers is 12 on my 11th roll?

- Negative binomial

- The number of successes is fixed.
- The number of trials is a random variable.

If a coin is repeatedly tossed, what is the probability the third time heads appear occurs on the 9th toss?

- Poisson

- Closely approximates the binomial distribution if n is large and p is small.

What is the probability there will be 4 car accidents on a university campus in a given week?

Customers arrive at a bank machine at an average rate of 2 per minute. How likely is it that 5 or more arrive in a single given minute?

- Exponential

I am waiting for the next lightening flash in a storm. At any time, the probability of the next flash being in the next $\Delta t \Delta t$ seconds is $0.05 \Delta \mathrm{t} 0.05 \Delta \mathrm{t}$ (in the limit as $\Delta \mathrm{t} \rightarrow 0 \Delta \mathrm{t} \rightarrow 0$). How likely is it that the flash will occur in the next 4 seconds?

